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Wishart-Laguerre ensemble
• Introduced by John Wishart in 1928
• JPD of eigenvalues (real and positive) is 

known

• Density of eigenvalues for





Superstatistics
• Beck and Cohen (2003)
• Simple description of non-equilibrium 



X

•The variance of       -entries fluctuates from one 
sample to another

•The spectral density and all correlation functions 
of                         are modified

•The model is exactly solvable

Superstatistical model





Three Superstatistical Classes

• -distribution

• Inverse        -distribution

• Log-Normal Distribution





Two distributions of matrix elements

Both are obtained as averages of the 
standard Wishart-Laguerre weight over 

different distributions of the variance of X

Power-law decay of spectral correlations

Exponential decay of spectral correlations
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Conclusions
• Random Covariance Matrices
• Variance of data fluctuates from one 

sample to another according to a 
normalized distribution 

• Integral Transform of Wishart-Laguerre
ensembles, depending on a single 
deformation parameter

• The model can be solved exactly  
• Expected applications beyond the usual 

superstatistical classes         



Assets

Returns 
(N~10^2)

Time  (T~10^3)
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C = Empirical 
Covariance Matrix



Empirical Covariance Matrix

• N x N
• Real
• Symmetric
• Positive definite

C

Eigenvalues are real and positive
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A new model of random covariance 
matrices

• Exactly solvable

• Recovers Wishart-Laguerre in a certain 
limit

• Power-law tails
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Salient features of the deformed 
model

• The data matrix X has entries correlated in 
an intricate way.

• It recovers Wishart-Laguerre in the limit of 
large γ.

• We can hope to get power-law tails.
• It remains to prove that it is exactly 

solvable!





Exact results
• Density of eigenvalues for finite N and γ

• Macroscopic density of eigenvalues in a 
certain double scaling limit



Density of Eigenvalues



Comparison to Financial Data
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Summary

• Exactly solvable deformation of 
Wishart-Laguerre ensemble of random 
matrices.

• Only one free parameter    , such that 
we recover WL for

• Good agreement with eigenvalue
distribution from financial data
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