Universality in complex Wishart ensembles

M. Mo: arXiv:0809. 0, arXiv:0& . 8

Eigenvalue statistics of complex Wishart ensembles

Multiple Laguerre polynomials and Riemann-Hilbert problem

Results

 N_N has distinct eigenvalues, N_0 of them, and N_N of them a.

 $M \quad N \text{ and as } N \to \quad \text{, both } N_0, \ \underline{N} \to \quad \text{ and } \frac{N}{M} \to c,$ $\frac{\underline{N}}{N} \to \quad \text{.}$

Universality: Eigenvalue correlations given by the Sinekernel in the bulk of the spectrum and Airy kernel in the lim

Global eigenvalue statistics

Studied by Bai, Choi and Silverstein with Stieltjes transform.

The Stieltjes transform of the limiting eigenvalue distribution satis es

$$m(z) \checkmark \mathbb{R} \frac{1}{t(-c-czm)-z} dH(t)$$

H(t): limiting eigenvalue distribution of N .

Local eigenvalue statistics

Most results assumed the covariance matrix, P_N is a nite rank perturbation of the identity matrix.

This is one of the few results for non-spiked models.

Baik, Ben-Arous and Péché (0): eigenvalue correlation functions in terms of a determinantal formula.

Multiple Laguerre polynomials

Generalization of Laguerre polynomials that are orthogonal to multiple weights: $x^{M-N}e^{-Ma_j^*x}$. E.g.

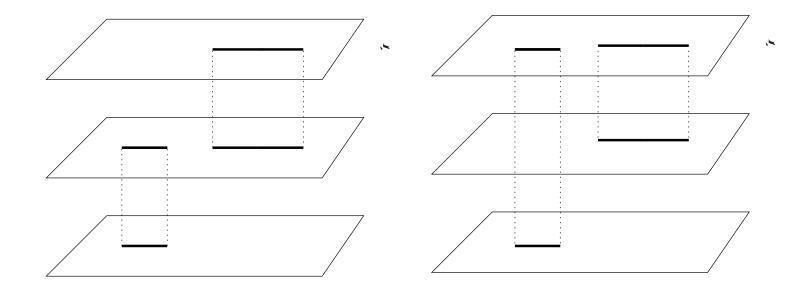
$$L_{n} n (x) x^{i+M-N} e^{-Mx} dx = 0 \quad i = 0 \qquad n \Rightarrow$$

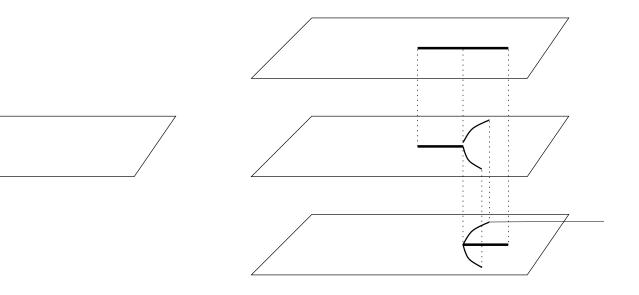
$$L_{n} n (x) x^{i+M-N} e^{-Ma^* x} dx = 0 \quad i = 0 \qquad n \Rightarrow$$

(Bleher and Kuijlaars, Desrosiers and Forrester) Correlation kernel of complex Wishart ensembles can be expressed in terms of multiple Laguerre polynomials.

Multiple Laguerre polynomials are solutions of Riemann-

Riemann surface depends on parameters and di cult to determine sheet structure in this case.





Stieltjes transform

De ne \underline{F} by

$$\underline{F} \checkmark (c - c) I_{0} \rightarrow cF$$

then the Stieltjes transform $m_{\underline{F}}$ satis es

$$m_{\underline{F}}(z) \checkmark - \left(z - c \quad \frac{tdH(t)}{\mathbb{R} + tm_{\underline{F}}}\right)^*$$

In our case, dH(t) is

$$dH(x) \checkmark (-) + a$$

Gives us an algebraic equation

$$z \checkmark -+ \tilde{c} -+ c - + c - \frac{a}{\swarrow + a}$$

Observations:

 κ . The equation has solutions behaves like

. $m_{\underline{F}}$ is the solution \searrow . So \searrow has branch cut on the support of \underline{F} .

Lemma 1 If z . supp (\underline{F}) , then $m \not = m_{\underline{F}}(z)$ satisfies the following.

- **1.** $m \quad \mathbb{R} \quad \mathsf{O}$;
- 2. $-\frac{1}{m}$. supp(H);
- **3.** z'(m) **0.**

Conversely, if m satisfies 1-3, then $z \not = z(m)$. supp(<u>F</u>).

 $z' \sim 0$ are the potential end points of the support.

Zeros of the polynomials

$$a (-c) + (a (-c) + a(-c(-))) + (-c(-)) + (-c(-))) + (-c(-)) + (-c(-)) + (-c(-)) + (-c(-))) + (-c(-)) + (-c(-)) + (-c(-))) + (-c(-)) + (-c(-)) + (-c(-))) + (-c(-)) + (-c(-))) + (-c(-)) + (-c(-)) + (-c(-))) + (-c(-)) + (-c(-)) + (-c(-))) + (-c(-)) + (-$$

Discriminant positive, real roots , , Discriminant negative, real roots ,

Complement of support: E.g. when there are real roots, $supp(\underline{F})^{c} \leftarrow (- 0) (0,) (-) (-)$

So if we have $\$, then support consists of intervals, otherwise support has interval.

_		_
_		_
_		_

Summary

Studied complex Wishart ensembles whose covariance matrix has N_0 eigenvalues, and N eigenvalues a and $\frac{N}{M} \rightarrow c$, $\frac{N}{N} \rightarrow \cdot$.

One of the few cases when results was obtained for nonspiked models.

Correlation kernel given by Sine-kernel in bulk and Airy kernel in edge. Tracey-Widom distribution for largest eigenvalue.

Uses Stieltjes transform to overcome di culties in the application of Riemann-Hilbert analysis.

When covariance matrix has nitely many distinct eigenvalues, Stieltjes transform gives a Riemann surface and the analysis can be generalized to the case when the Riemann surface has less than or equal to complex branch points.