Some results on Gaussian beta ensembles at high temperature

Trinh Khanh Duy

Institute of Mathematics for Industry, Kyushu University, Japan trinh@imi.kyushu-u.ac.jp

1. Gaussian beta ensembles

Gaussian beta ensembles (G E). Ensembles of real points with joint density $(1)^{(1)} = ($

They are generalizations of GOE, GUE and GSE, and can also be viewed as the equilibrium meas. of a one dim. Coulomb log-gas at the inverse temperature .

Jacobi matrix models (Dumitriu and Edelman 2002).

$$T_{n;} = \bigotimes^{N(0;1)} {N(0;1)} {N(0;1)} {N(0;1)} {N(0;1)} {N(0;1)} {N(0;1)} {N(0;1)}$$

where $< \mathcal{N}(\cdot; \cdot^2)$: Gaussian distribution with mean and variance 2 ; $\sim_k = \frac{1}{2}$ $_k = \frac{1}{2}$ Gamma($\frac{k}{2}$; 1):

The eigenvalues $(1/2/2/2)^n$ of $T_{n/2}$ are distributed as G E. Let $q_j = jv_j(1)j$, where v_1 ; ::: v_n are the corresponding normalized eigenvectors. Then $(q_1^2 : : : : q_n^2)$ have Dirichlet distribution with parameter $\frac{1}{2}$, and are independent of $(1/2/2/2)^n$.

- We are interested in the following quantities.

 Empirical distribution/measure: $L_{n;} = \frac{1}{n} \int_{j=1}^{n} f_{j}(t) dt$
 - 2 Spectral measure (to be de ned on the right): $n_i = \prod_{j=1}^{p} q_j^2$
 - 3 Bulk statistics: $n = \bigcap_{j=1}^{p} n_{(j E)^j}$ for $x \in E$.

2. Spectral measures of Jacobi matrices

Jacobi matrices (nite and in nite):
$$J = \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-1} & a_n & & \\ \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & & \\ b_1 & a_2 & b_2 & \\ & b_2 & a_3 & b_3 & \\ & & \ddots & \ddots & \ddots & \\ \end{bmatrix}$$

