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Abstract 

This paper introduces a new modelling approach that incorporates nonlinear, exponential 

deterministic terms into a fractional integration model. The proposed model is based on 

a specific version of Robinson’s (1994) tests and is more general that standard time series 

models, which only allow for linear trends.  Montecarlo simulations show that it performs 

well in finite sample.  Three empirical examples confirm that the suggested specification 

captures the properties of the data adequately. 
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1. Introduction 

It is common practice in applied work to allow for simple linear deterministic trends when 

modelling standard economic and financial series (Bhargava, 1986; Stock and Watson, 

1988; Schmidt and Phillips, 1992). However, some of them appear to be characterised by 

exponential growth as in the case of compound interest. An exponential growth trend can 

be captured by taking logs of the series of interest and regressing it against a constant and 

a linear trend. However, fitting a linear trend with a constant growth rate is in most cases 

too restrictive. 
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where α, β and γ are unknown parameters (the intercept, the time trend coefficient and its 

exponent respectively); in addition, xt is assumed to be an integrated process of order d, 

i.e., 

                          
,...,2,1t,ux)B1( tt

d   �    (2) 

where d can be any real value, B is the backshift operator, i.e., Bkxt = xt-k, and thus ut is 

an I(0) process, more precisely a covariance-stationary one with a spectral density 

function that is positive and bounded at the zero frequency.  

We test the null hypothesis: 

                          
,dd:H oo       (3) 

for any real value d0 in the model given by (1) and (2) by choosing specific values for γ, 

for example between 0 and 2, with 0.01 increments. Under the null hypothesis (3), the 

model given by (1) and (2) becomes: 

 
              

�̃�𝑡 = 𝛼1̃𝑡 + 𝛽(�̃�𝑡) + 𝑢𝑡 , 𝑡 = 1,2, . . .,    (4) 

where 

,y)B1(y~ t
d

t
o�  

and 

,1)B1(1
~

od
t �  and 

    
�̃�𝑡 = (1 − 𝐵)𝑑𝑜(𝑡)𝛾. 

Since the value of γ is set, one 
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basis of (5), the null Ho (3) will be rejected against the alternative Ha: d z do if R̂ >
2

,1 DF , 

with Prob (
2

1F >
2

,1 DF ) = D. It is easy to see that this result holds for any value of γ in the 

interval (0, 1). Specifically, Robinson (1994) used the following regression model 

                     
𝑦𝑡  =
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increase as the sample size increases, which is consistent with the asymptotic behaviour 

of the test. 

TABLES 1 AND 2 ABOUT HERE 

 Table 2 is similar to Table 1 but reports the results based on the t3-Student 

distribution for the error term. Once again the sizes are higher than the 5% level and 

higher values are observed against departures of the form d < do. The rejection frequencies 

are also higher for this type of departures, and even for small ones the rejection 

frequencies are relatively high. 

 

4. Three Empirical Applications 

https://www.stlouisfed.org/


8 
 

with γ = 0.80, d = 1.28 and the 95% confidence interval being given by (1.17, 1.42), with 

the remaining two parameters, α and β, both being statistically significant. Thus, the unit 

root null hypothesis is rejected in favour of d > 1 and γ < 1, which indicates the presence 

of a concave time trend in the data. 

 Table 4 has the same layout as the previous one but concerns the S&P500 stock 

market index. The estimates of d now range between 0.91 and 1.24 and the lowest statistic 

is obtained with γ = 1.00 and d = 0.97 (0.92, 1.24). Thus, a linear time trend with a unit 

root seems to be a plausible hypothesis; this is consistent, for t >2, with a random walk 

model with an intercept, and thus with the Efficiency Market Hypothesis (EMH) in its 

weak form (Fama, 1970). 

 Finally, Table 5 reports the corresponding results for the US Consumer Price 

Index. In this case d is much higher than 1 (specifically, 1.44), with a confidence interval 

given by (1.38, 1.52), and thus the unit root null hypothesis is rejected in favour of d > 1; 

also, the estimate of γ = 1.10 implies a convex time trend. 

 

5. Conclusions 

This paper puts forward a modelling and testing framework that allows for exponential 

deterministic trends in a fractional integration context. The Montecarlo simulations 

carried out to examine the properties of the proposed test indicate that it performs well in 

finite samples.  As an illustration, the 
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Figure 1: Realisations from Equations (1) and (2) with d = 0.25 

γ  =  0.25 γ  =  0.50 

  

γ  =  0.75 γ  =  1.00 

  

γ  =  1.25 γ  =  1.50 
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Figure 2: Realisations from Equations (1) and (2) with d = 0.50 

γ  =  0.25 γ  =  0.50 

  

γ  =  0.75 γ  =  1.00 

  

γ  =  1.25 γ  =  1.50 

  
Note: We generate Gaussian series with T = 1000, and then produce the realisations of yt in (1) and (2) 

with d = 0.50. 

 

 

 

 

 

- 2
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Figure 3: Realisations from Equations (1) and (2) with d = 0.75 

γ  =  0.25 γ  =  0.50 

  

γ  =  0.75 γ  =  1.00 

  

γ  =  1.25 γ  =  1.50 

  
Note: We generate Gaussian series with T = 1000, and then produce the realisations of yt in (1) and (2) 

with d = 0.75. 
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Figure 4: Realisations from Equations (1) and (2) with d = 1.00 

γ  =  0.25 γ  =  0.50 

  

γ  =  0.75 γ  =  1.00 

  

γ  =  1.25 γ  =  1.50 

  
Note: 
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Figure 5:  US Real GNP Per Capita 
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Table 4: Estimated coefficients for the log of US real GNP per capita 

γ d 95% band α (t-value) β (t-value) Stastistic 

0 0.96 (0.93,  1.02) 41.119   (0.171) --- 0.227 

0.10 0.96 (0.93,  1.02) 42.633   (0.143) 49.836   (0,16) 0.219 

0.20 0.97 (0.92,  1.23) 52.366   (0.399 39.924  (0.31) 0.203 

0.30 0.97 (0.92,  1.23) 54.121   (0.70) 37.914  (0.56) 0.239 
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