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Abstract

This paper investigates spatio-temporal variations in ex-post credit risk in the United
States, as a function of real estate prices, loan purchases made by government sponsored



1 Introduction

Since the second half of 2007, the United States experienced a severe Önancial crisis that spread to
the Önancial sector of European and Asian economies and triggered a deep, worldwide, recession.
The US housing market and its interaction with the Önancial system has been pointed as the main
cause of such crisis, through the build-up of a bubble in real estate markets that eventually collapsed.



estate prices, GSEs loan purchases, and a set of local, socio-economic characteristics in the United
States. We take non-performing loans (NPLs) as proxy for ex-post credit risk. As a proxy for real
estate prices we focus on house prices of residential properties, using data from the Federal Housing
Finance Agency on loan purchases made by the GSEs Fannie Mae and Freddie Mac. We explore
the impact of house prices on NPLs across US metropolitan areas, both in the period of housing
boom, in the years 2000 to 2005, and during the house-price bubble bursting, over the years 2006 to
2011. Dividing the sample period into two subsets is also justiÖed by the structural break in house
prices observed towards the end of the Örst sub-period.

Economic theory has formulated a number of hypotheses to explain the relationship between
Önancial stability and real estate prices. Some authors suggest that increases in house prices reduce
the risk of real estate Önancing perceived by banks, thus inducing excessive lending to risky real
estate borrowers (DellíAriccia and Marquez (2006)). In addition, rising house prices may encourage
the riskiest investors to bet on further price increases, leading to a rise in the demand of credit.
These factors work in the same direction and tend to increase the bank exposure to risky assets, thus
suggesting a positive relationship between NPLs and real estate prices, as increasing bank loans also
increase ex-post credit risk. Other theories instead predict a negative relation. For example, the
collateral value hypothesis asserts that, in a period of rising house prices, the value of the collateral
increases thus improving borrowersíÖnancial position, which in turn reduces the associated risk
of default (Koetter and Poghosyan (2010)). During the bursting of the bubble, theoretical models
also suggest that, when house prices start to fall below the nominal value of loans, both speculative



such as personal income and unemployment, that are well known to ináuence borrowersíbalance
sheet and their debt servicing capacity. However, we observe that other socio-economic factors may
also a¤ect NPLs, such as the degree of urbanization, deprivation and crime, which are notoriously
di¢ cult to quantify and are well known to be geographically concentrated. Accordingly, in our
empirical model we allow errors to be spatially correlated and assume that they follow a spatial
autoregressive process. Ignoring spatial dependence, when this is present in the data, leads to
ine¢ cient estimates, which may cause wrong inferences. The availability of reliable models is very
important for all market participants, including institutional investors, those who regulate housing,
GSEs, mortgage lenders, and related Önancial institutions. In our regression speciÖcation, we
also incorporate MSA-speciÖc e¤ects, and control for MSA-speciÖc heteroskedasticity, to allow for
heterogeneity in the characteristics of borrowers across di¤erent MSAs.

To estimate this model, we develop an ad-hoc generalized method of moments (GMM) procedure
which consists of augmenting moments proposed by the panel literature to estimate pure dynamic
panels, with a set of quadratic conditions in the disturbances. Recent years have witnessed an
emerging interest towards the use of GMM for estimating regression models with spatially correlated
disturbances. The proposed model is in line with the framework advanced by Mutl (2006). However,
the work in Mutl (2006) relays on the restrictive assumption of homoskedastic group-speciÖc e¤ects



banks to lend excessively to risky real estate borrowers at unreasonably low rates (Bernanke and
Gertler (1995)). According to this view, departures of house prices from their fundamental value
increase bankís probability of default. Using data on 78 regional real estate markets in Germany,
Koetter and Poghosyan (2010) Önd evidence that larger departures of house prices from their
fundamental value increase the bankís probability of default, as stated in the deviation hypothesis.
Gimeno and Martinez-Carrascal (2010) use Spanish data and Önd evidence that house purchase
loans depend positively on house prices. However, they also Önd evidence for causality from loans
to prices when loans depart from their long-run levels. An alternative approach is taken by Mian
and SuÖ (2009), who investigate the reasons for the rapid expansion in the supply of mortgage
credit and increase in house prices in the period 2001 to 2005, and the subsequent mortgage default
crisis of 2007, at zip code level, in the US. The authors wish to explore whether the rapid growth
in mortgage debt and house price are due to a greater willingness by lenders to assume risk that
led to a reduction in the risk premium (supply explanation), or rather to increases in productivity
or economic opportunities (demand explanation). They Önd that zip codes with high unfulÖlled
demand (at the beginning of the sample period) experienced a sharp relative decrease in denial rates
and a relative increases in mortgage credit and house prices over time, despite the fact that they
also experienced negative relative income and employment growth. Results are strongly consistent
with the supply hypothesis, also pointing at the important role of securitization in credit expansion.

Endogenous developments in the Önancial market can greatly amplify the e¤ect of small income
shocks, through the so-called Önancial accelerator mechanism (Bernanke, Gertler, and Gilchrist
(1996)). In particular, positive shocks to household income translate into wider house price increases
in geographical areas where people can borrow against a larger fraction of their housing value (thus
having a high loan-to-value) such as in the US and UK, and smaller in countries where such leverage
ratios are lower (e.g. Italy). Empirical evidence on such Önancial accelerator for a set of countries
can be found in Almeida, Campello, and Liu (2006).

Empirical research also suggests that banks bad loans are closely related to the economic and



determining loan quality and NPLs. We refer to Louzis, Vouldis, and Metaxas (2012) for a review
of this literature.

In this paper, to study variations in NPLs over time and across territory, we extend the GMM
approach for pure dynamic panels, to allow for spatial dependence in disturbances. Hence, it is of
interest to brieáy introduce the reader to the literature on GMM estimation of panels in the presence
of spatial dependence. Kelejian and Prucha (1999) Örst proposed GMM estimation of regression
models with spatial autoregressive (SAR) disturbances, in a single cross sectional setting. They
suggested the use of three moment conditions that exploit the properties of disturbances entailed
by a standard set of assumptions. In the last few years, a sizeable literature has been developed to
extend this procedure. Liu, Lee, and Bollinger (2012) and Liu, Lee, and Bollinger (2010) suggested
a set of linear and quadratic conditions in the error term, where the matrices appearing in the







Assumption 2 The group-speciÖc e¤ects, �i, and the errors, "it, satisfy:

E (�i) = 0; E ("it) = 0; i = 1; 2; ::; N ; t = 1; 2; :::; T; (3)

E ("is"it) = 0; i = 1; 2; ::; N ; s 6= t = 1; 2; :::; T; (4)

E (�i"it) = 0; E (xit"it) = 0; i = 1; 2; ::; N ; t = 1; 2; :::; T: (5)

Assumption 3 The main diagonal elements of W are zero. The row and column norms of the
matrices W and (IN � �W)−1 are bounded.

Assumption 4 �0 2 [cl; cu], with �1 < cl; cu < 1, and (IN � �W)−1 is non-singular for all
� 2 [cl; cu].

The existence of moments of order higher than four stated in Assumption 1 is needed for ap-
plicability of the central limit theorem for triangular arrays by Kelejian and Prucha (2001). In
Assumption 2, conditions (4) require serially uncorrelated errors, while (5) exclude the xit process
to be endogenously determined. The following assumptions concerning the initial conditions are
also taken

E (y



instruments valid under certain assumptions on the initial conditions of the dynamic process. In
particular, suppose that, in addition to (3)-(6), the conditions

E (�yi1�i) = 0; (10)

hold. Then the following (T � 1)2 =2 moment conditions are available for the equation in levels, (1):

E [�yis (yit � �0yi;t−1 � �′0xit)] = 0; for s = 1; :::; t� 1; t = 2; 3; :::; T: (11)

Further, if regressors, xit, satisfy
E (�xi1�i) = 0; (12)

then, under strict exogeneity, the T 2 conditions

E [�xis (yit � �0yi;t−1 � �′0xit)] = 0; s = 1; 2; :::; T ; t = 1; 2; :::; T; (13)

can also be used, while under weak exogeneity, we have the T 2=2 moments

E [�xis (yit � �0yi;t−1 � �′0xit)] = 0; for s = 1; 2; ::::; t� 1; t = 1; 2; :::; T: (14)

We observe that, if (7)-(8) (or (9)) and (11), (13) (or (14)) are used jointly, then some of the
conditions in (11)-(14) are redundant. In this case, in addition to (7)-(8), only the (T � 1) conditions

E [�yi;t−1 (yit � �0yi;t−1 � �′0xit)] = 0; for t = 2; 3; :::; T; (15)

and, under either strictly or weakly exogenous regressors,

E [�xit (yit � �0yi;t−1 � �′0xit)] = 0; for t = 1; 2; :::; T; (16)

can be used. Conditions (7)-(8) and (15)-(16) yield the so-called system GMM, Örst proposed by
Blundell and Bond (1998) in the context of a pure autoregressive panel data model. It is convenient
to rewrite moments (7)-(16) in the compact form:

E [Z′ (q�G0)] = 0; (17)

where 0 = (�0;�
′
0)
′, q = (q′1:;q

′
2:; ::::;q

′
N:)
′, Z = (Z′1:;Z

′
2:; :::;Z

′
N:)
′ G = (G′1:;G

′
2:; :::;G

′
N:)
′. The

vectors qi: and the matrices Zi:, Gi: i = 1; 2; ::; N , depending on the three possible sets of conditions
(and under the further assumption of strictly exogenous regressors), are given by:

(i) Under the di¤erence moment conditions (7) and (8):

Zi: = Zd
i:

(T−1)×(1+2k)T (T−1)=2

=

0BBB@
yi0;x

′
i1; :::;x

′
iT 0 ::: 0

0 yi0; yi1;x
′
i1; :::;x

′
iT ::: 0

. . . :::
0 0 ::: yi0; :::; yi;T−2;x

′
i1; :::;x

′
iT

1CCCA ; (18)

qi: = qdi:
(T−1)×1

=

0@ �yi2
:::

�yiT

1A ;Gi: = Gd
i:

(T−1)×(k+1)

=

0B@ �yi1 �x′i2
...

...
�yi;T−1 �x′iT

1CA : (19)
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(ii) Under the level moment conditions (11) and (13):

Zi: = Z`
i:

(T−1)×[2kT+(T−1)](T−1)=2

=

0BBB@
�yi1;�x′i1; :::;�x′i;T 0 ::: 0

0 �yi1;�yi2;�x′i1; :::;�x′i;T ::: 0
. . . :::

0 0 ::: �yi1; :::;�yi;T−1;�x′i1; :::;�x′i;T

1CCCA ;(20)

qi: = q`i:
(T−1)×1

=

0@ yi2

yiT

1A ;Gi: = G`
i:

(T−1)×(k+1)

=

0@ yi1 x′i2

yi;T−1 x′iT

1A : (21)

(iii) Under both di¤erence and level moment conditions:

Zi: = Zsys
i:

2(T−1)×(T−1)[(1+2k)T=2+(1+k)]

=

0BBBBB@
Zd;i 0 0
0 �yi1;�x′i2 0 ::: 0
... �yi2;�x′i3

::: 0
0 0 0 ::: �yi;T−1;�x′iT

1CCCCCA ;(22)

qi: = qsysi:
2(T−1)×1

=

�
q`i:
qdi:

�
;Gi: = Gsys

i:
2(T−1)×(k+1)

=

�
Gd
i:

G`
i:

�
: (23)

In addition to momenA









ith MSA whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac.6

Similarly, GSEit



6 Estimation results

Tables 6 and 7 present the estimated parameters for the two sub-periods. In both tables, the upper





to existing empirical literature on nonperforming loans. Di¤erently from previous work, we have
used data at metro level, to properly capture the e¤ect of local social, economic and Önancial
conditions on Önancial stability. Our results point to a signiÖcant negative impact of real estate
prices on ex-post risk, both during and before the bust of the bubble. In a period of house prices
rising fast, this result corroborates the hypothesis that wealth can play the role of a bu¤er in case of
unexpected shocks or that housing wealth can be used as collateral to ease access to credit. During
the bursting of the bubble, when house prices start falling below the nominal value of loans, the
negative impact of real estate prices on NPLs is explained by an increase in default rates due to
speculative buyers and owner-occupiers that are unwilling or unable to repay their mortgages and
have di¢ culties in selling their properties. Our results also indicate a signiÖcant positive impact of
GSE loan purchases on ex-post risk, only in the period during the bust of the bubble. Hence, in a
period of crisis, the activity of GSEs seems to contribute to enhancing Önancial fragility, rather than
working as a economic cushion to mortgage markets. We also found a marked spatial concentration
of unobservables, that rises consistently during the bubble bust. Such result may be explained by
the worsening of social and economic conditions, which in turn may have accentuated the spatial
clustering of poverty and deprivation across the territory in this period.

Another major contribution of this paper has been to extend existing econometric methods
adopted to study the determinants of NPLs, to account for possible spatial dependence present
in the data. To this end, we have developed an ad-hoc GMM procedure to estimate a Öst-order
dynamic panel data regression model with group-speciÖc e¤ects and spatial autoregressive errors.
This procedure may be adopted to investigate a large number of economic problems characterised by
both spatial and temporal patterns. For instance, they may be useful for estimating cross-country
growth regressions as in Caselli, Esquivel, and Lefort (1996), studying spatio-temporal patterns in
consumption behaviour (see, for example, Browning and Collado (2007)), or exploring the dynamics
in the production of Örms as in Blundell and Bond (2000).
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Appendices
In these appendices we Örst introduce the GMM estimator of the SAR coe¢ cient, and prove its consistency
and asymptotic normality. We then provide results for a small Monte Carlo exercise. For our statistical
derivations, it is useful to introduce the following lemma.

Lemma 1 Let �" = (�"′1:;�"
′
2:; :::;�"

′
N:)
′, �"i: = (�"i2; :::;�"iT )′, be a N (T � 1)-dimensional vector

with "it satisfying Assumption 1, and let A`, for ` = 1; 2; :::; r, be non-stochastic matrices with zero diagonal
elements. We have, for ` = 1; 2; :::; r,

1

2N (T � 1)
E
�
�"′ (A` 
 IT−1) �"

�
= 0; (.45)

V ar

�
1

2N (T � 1)
�"′ (A` 
 I ` 
 I
 10.9091 Tf 7.575 05 -1.777 Td [(`)]TJ/F24 10.9091 Tf 6.382 1d6t58777 Td [(`)=9 4.5031.76.39 1 7.9706A





To prove (A.1), note that

1

2N (T � 1)
�"̂ (�)′ (A` 
 IT−1) �"̂ (�)

=
1

2N (T � 1)
(̂ � 0)′Gd′ �(IN � �W)′A` (IN � �W)
 IT−1

�
Gd (̂ � 0)

+
2

2N (T � 1)
(̂ � 0)′Gd′ �(IN � �W) ′A`P (�)
 IT−1

�
�"

+�" (�)′ (A` 
 IT−1) �" (�)

=
1

2N (T � 1)
(̂ � 0)′Gd′ (B` 
 IT−1) Gd (̂ � 0)

+
2

NT
(̂ � 06 Td [(2)]TJ/F40 10.9091 Tf.( 7.134 -2.62 Td [(0)]TJ/F8 10.9091 Tf 4.732 2.62 Td [(6 Td [(2)]TJ/F40 141.107 0 Td [(�)]TJ/F38 7.)]TJ1613 -5.027 Td [(1i9091 3 2.62 Td [(688C 7.134 -2.62 Td [(0)] Tf 1 10.9091 Tf 4.243 0 Td [(A)]TJ/F41 7.9701 Tf 9.485 -1.777 Td [(`)]TJ/F24 10.9091 Tf 6.381 1.777 Td [(
)]TJ/F81 10.9091 Tf 10.909 0 Td [(I)]TJ/F43]TJ/F44 7.9706)] T [(
)]TJ/F81 10.9091 Tf 10.9091 Tf 9.558 0 Td [(�)]TJ/F75 10.9091 Tf 10.909 0 Td [()]TJ/F38 7.9701 Tf 7.134 -2.62 Td [(0)]TJ/F8 10I)]TJ/F43]TJ/F44 6.381 1.777 Td-09(.2701 Tf 9.864 4.505 Td [(8]TJ/F75 10.9091 Tf -9091 Tf 49G0)]TJ/F75833 J/F40 10.9091 Tf.( 7.134 -2.62 Td [(0)]TJ/F8 10.9091 Tf 4.732 2.62 Td [(6 10.9091 Tf 5.262 0 Td [())]TJ/F44 7.9701 Tf 4.242 5.027 Td [(0)]TJ/F8 10.9091 Tf 4.613 -5.027 Td [(()]TJ/F81 10.9091 Tf 4.243 0 Td [(A)]TJ/F41 7.9701 Tf 9.485 -1.777 Td [(`)]TJ/F24 10.9091 Tf 6.381 1.777 Td [(
)]TJ/F81 10.9091 Tf 10.909 0 Td [(I)]TJ/F41 7.9701 Tf 4.758 -1. Td [(
)]TJ/F/F41 7.9701 T: -1. Td9733 2.619 Td 398.363.673 0 Td D)t534 j706)]TJ/F8 10.90sd [(0)]TJ/F8 10.9091.97
20 139
)]TJ/F81 10.9091 Tf 10.909 0 Td [(I)]TJ/F41 7.9701 Tf 4.758 -1. Td [(
)]TJ/F/F41 7.9701 T: -1. Td9733 2.619 Td 398.363.673 0 Td D)t534 j7060(�pTJ/FT
0243 0 Td [(A)6d57j707.018 10.9091229.558 .381 1.777 Td-07476 -]T00210.9091 Tf 75 10.9091 Tf 356 7851430.85095





Let B` = P (�)′A`P (�) with elements bij;`, and note that the diagonal elements of (B` 
D) are 2bii;`, for
i = 1; 2; :::; N; t = 1; 2; :::; T . Then the variance of (A.6) satisÖes

V ar

�
1



Proof. Consistency and asymptotic normality of �̂ can be proved using results from Proposition and
following the same lines of reasoning as in Moscone and Tosetti (2011). See also Kelejian and Prucha
(1999), Liu, Lee, and Bollinger (2010), Lee (2007), and Kelejian and Prucha (2009) for further details on
consistency of GMM estimators of spatial models.

The e¢ cient GMM estimator can be obtained by imposing, in (A.10), the optimal weights given by
Q = Q∗ = V−1 (see Greene (2002) on this). Notice that the `th element of d is (see Appendix A.1)

d` = lim
N→∞

1

N
Tr
�
�
�
A` + A′`

�
W (IN � �0W)−1

�
: (A.12)

Since Q∗ and d depend on �0, they can be proxied by Q∗ = Q∗
�
�̂
�

, and d = d
�
�̂
�

, where �̂ =�
�̂; 1

2(T−1)

PT
t=1 (�"̂1t)

2 ; :::; 1
2(T−1)

PT
t=1 (�"̂Nt)

2
�′

.

A.1 The elements of d

We now show that
h
@
@�MNT (�)

��
�=�0

i
p! lim
N→∞

E
h
@
@�MNT (�)

��
�=�0

i
, and derive the elements of the v1d+at

!



B Monte Carlo evidence
We consider the following data generating process

yit = �i(1� �) + �yi;t−1 + �xit + uit; t = �m+ 1;�m+ 2; ::; 0; 1; :::; T; (B.1)

yi;−m = �i + �xi;−m + ui;−m; (B.2)

with

uit = �
NX
j=1

wijujt + "it; t = �m;�m+ 1;�m+ 2; ::; 0; 1; :::; T; (B.3)

and "it � IIDN(0; �2
i ); �

2
i � IIDU(0:05; 0:95); t = �m;�m + 1; :::; 0; 1; :::; T . We assume the spatial

weights matrix W is a row standardised regular lattice of 1st order, with elements wij = 1 if units i and j
are contiguous and wij = 0 otherwise. The spatial weight matrix is deÖned in a circular fashion, whereby
the Örst cross section unit is placed adjacent to the last unit. We discard the Örst m



B.1 Results
Table 1 shows results for the conventional, one-step GMM-DIF estimator of � and �, for the GMM-DIF
estimator corrected for spatial correlation using formulas (32), (41), and for the corresponding estimated
SAR parameter. The bias and RMSE of conventional GMM-DIF are small, and decrease as N gets large,
for all values of �, corroborating the theoretical results provided in the Örst part of Theorem 1. When
� = 0, the conventional GMM-DIF for � and � is correctly sized for all choices of N , while it is subject
to size distortions when � > 0. The over-rejection tendency is due to the use of inappropriate standard
errors, and appears to be substantial in the case where the true value of spatial parameter is relatively
large (� = 0:7). In contrast, the GMM-DIF estimator corrected for spatial dependence is correctly sized,
reáecting the fact that the estimated variance is a consistent estimator of the true variance.

Tables 2, 3 and 4 provide results for the conventional GMM-DIF, GMM-LEV and GMM-SYS estimators
using optimal weights, for the GMM-DIF, GMM-LEV and GMM-SYS estimators corrected for spatial
correlation using formulas (43)-(44) (i.e., ̂IIe ), and for the corresponding estimated SAR parameters. The
Örst panel of these tables shows that, when � = 0, the conventional GMM estimators with optimal weights
for � and � are correctly sized for large N . However, they show some size distortions when N = 300. This
result is in line with existing Öndings in the literature, indicating that the estimated asymptotic standard
errors of the conventional two-step GMM estimator are downward biased in small samples. The second
and third panels in Tables 2-4 show that, when � > 0, the conventional GMM estimators, ignoring spatial
dependence, are severely oversized even when N is large. In contrast, the empirical sizes of the GMM
estimators corrected for spatial dependence are very close to the nominal size, for all values of the spatial
parameters, for large N . Tables 1-4 also show that the GMM estimators for � are always correctly sized,
for any sets of moments taken to compute the slope parameters, and for all choices of N .

To conclude, our results indicate that, for the combination of N and T in our empirical study (N = 366
and T = 6), the proposed GMM estimators performs quite well.
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Table 1: Monte Carlo results for the conventional GMM-DIF estimator and the two-step GMM-DIF
estimator corrected for spatial correlation

�0= 0:3 �0= 0:7
N Par. Bias RMSE Size Power Bias RMSE Size Power

�0= 0:0 �0= 0:0
300 �̂ -0.026 0.063 0.053 0.583 -0.040 0.081 0.053 0.530

500 -0.013 0.054 0.057 0.650 -0.022 0.063 0.053 0.600

300 �̂
II

-0.025 0.063 0.050 0.580 -0.039 0.081 0.057 0.533

500 -0.012 0.054 0.057 0.643 -0.022 0.063 0.053 0.590

300 �̂ 0.034 0.184 0.050 0.573 -0.025 0.186 0.050 0.457

500 0.028 0.158 0.050 0.593 0.004 0.139 0.050 0.450

300 �̂
II

0.033 0.184 0.050 0.573 -0.024 0.186 0.053 0.463

500 0.028 0.158 0.053 0.593 0.004 0.139 0.057 0.450

300 b� -0.002 0.047 0.033 0.593 -0.001 0.047 0.043 0.557

500 0.002 0.038 0.056 0.747 0.003 0.038 0.050 0.750

�0= 0:3 �0= 0:3
300 �̂ -0.027 0.065 0.097 0.597 -0.043 0.086 0.127 0.537

500 -0.014 0.055 0.093 0.697 -0.024 0.066 0.113 0.587

300 �̂
II

-0.024 0.062 0.053 0.590 -0.038 0.080 0.050 0.523

500 -0.012 0.053 0.050 0.643 -0.022 0.062 0.050 0.597

300 �̂ 0.037 0.196 0.080 0.580 -0.025 0.198 0.083 0.647

500 0.031 0.165 0.077 0.593 0.002 0.147 0.077 0.640

300 �̂
II

0.029 0.180 0.053 0.560 -0.026 0.185 0.050 0.663

500 0.027 0.155 0.053 0.580 0.004 0.137 0.053 0.650

300 b� -0.007 0.041 0.047 0.750 -0.006 0.040 0.043 0.733

500 -0.002 0.032 0.057 0.917 0.000 0.032 0.060 0.903

�0= 0:7 �0= 0:7
300 �̂ -0.034 0.086 0.223 0.693 -0.065 0.122 0.290 0.650

500 -0.019 0.064 0.223 0.727 -0.037 0.086 0.230 0.630

300 �̂
II

-0.024 0.062 0.053 0.603 -0.037 0.079 0.057 0.510

500 -0.012 0.052 0.050 0.643 -0.022 0.060 0.050 0.613

300 �̂ 0.055 0.300 0.130 0.517 -0.040 0.320 0.120 0.763

500 0.049 0.236 0.110 0.513 -0.008 0.233 0.100 0.727

300

�



Table 2: Monte Carlo results for the conventional GMM-DIF estimator using optimal weights and
the two-step GMM-DIF estimator corrected for spatial correlation

�0= 0:3 �0= 0:7
N Par. Bias RMSE Size Power Bias RMSE Size Power

�0= 0:0 �0= 0:0
300 �̂e -0.025 0.067 0.080 0.567 -0.037 0.086 0.110 0.507

500 -0.012 0.055 0.050 0.630 -0.020 0.064 0.073 0.580

300 �̂
II

e -0.024 0.068 0.057 0.557 -0.036 0.088 0.060 0.503

500 -0.012 0.055 0.053 0.623 -0.019 0.064 0.063 0.580

300 �̂e

e



Table 3: Monte Carlo results for the conventional GMM-LEV estimator using optimal weights and
the two-step GMM-LEV estimator corrected for spatial correlation

�0= 0:3 �0= 0:7
N Par. Bias RMSE Size Power Bias RMSE Size Power

�0= 0:0 �0= 0:0
300 �̂e 0.000 0.065 0.100 0.467 0.002 0.045 0.063 0.713

500 0.012 0.047 0.057 0.517 0.005 0.031 0.057 0.860

300 �̂
II

e -0.002 0.066 0.090 0.490 0.001 0.046 0.067 0.717

500 0.011 0.047 0.053 0.513 0.005 0.032 0.050 0.853

300 �̂e -0.001 0.173 0.060 0.647 -0.003 0.138 0.060 0.783

500 -0.017 0.133 0.050 0.663 0.000 0.105 0.047 0.703

300 �̂
II

e 0.004 0.175 0.060 0.637 -0.002 0.140 0.060 0.780

500 -0.015 0.133 0.053 0.663 0.001 0.105 0.047 0.710

300 b� -0.001 0.047 0.053 0.580 -0.001 0.047 0.040 0.567

500 0.003 0.038 0.057 0.747 0.003 0.038 0.057 0.750

�0= 0:3 �0= 0:3
300 �̂e -0.002 0.065 0.097 0.487 0.001 0.046 0.090 0.723

500 0.011 0.047 0.090 0.567 0.005 0.032 0.077 0.857

300 �̂
II

e -0.002 0.065 0.070 0.490 0.001 0.046 0.067 0.710

500 0.011 0.047 0.063 0.523 0.005 0.032 0.047 0.873

300 �̂e 0.003 0.180 0.083 0.640 -0.002 0.145 0.080 0.780

500 -0.014 0.141 0.067 0.667 0.002 0.111 0.063 0.700

300 �̂
II

e 0.004 0.170 0.063 0.630 0.001 0.139 0.080 0.780

500 -0.016 0.131 0.053 0.670 0.000 0.104 0.057 0.710

300 b� -0.007 0.041 0.057 0.740 -0.004 0.040 0.057 0.733

500 -0.001 0.033 0.057 0.903 0.001 0.032 0.057 0.900

�0= 0:7 �0= 0:7
300 �̂e -0.009 0.080 0.230 0.583 -0.004 0.058 0.180 0.690

500 0.005 0.055 0.177 0.667 0.004 0.044 0.160 0.803

300 �̂
II

e -0.001 0.062 0.060 0.467 0.002 0.045 0.060 0.693

500 0.012 0.047 0.050 0.500 0.006 0.032 0.050 0.880

300 �̂e 0.022 0.249 0.143 0.777 0.011 0.214 0.113 0.747

500 0.000 0.186 0.113 0.773 0.007 0.161 0.093 0.757

300 �̂
II

e 0.000 0.162 0.050 0.730 0.002 0.134 0.057 0.783

500 -0.016 0.128 0.057 0.773 -0.001 0.100 0.043 0.720

300 b� -0.007 0.025 0.050 1.000 -0.004 0.023 0.053 1.000

500 -0.002 0.019 0.053 1.000 0.000 0.019 0.057 1.000

We compute ̂e =
�
�̂e; �e

�′
using equation (3.2) in Arellano and Bover (1995),

and ̂IIe =
�
�̂
II

e ; �
II
e

�′
using equation (43), and (44) for its variance.

We compute �̂ using residuals �ûit



Table 4: Monte Carlo results for the conventional GMM-SYS estimator using optimal weights and
the two-step GMM-SYS estimator

�0= 0:3 �0= 0:7
N Par. Bias RMSE Size Power Bias RMSE Size Power

�0= 0:0 �0= 0:0
300 �̂e -0.002 0.034 0.120 0.920 -0.002 0.031 0.130 0.950

500 0.005 0.026 0.073 0.973 0.002 0.024 0.090 0.993

300 �̂
II

e -0.001 0.034 0.120 0.907 -0.001 0.032 0.140 0.940

500 0.005 0.026 0.073 0.967 0.002 0.024 0.083 0.993

300 �̂e 0.000 0.058 0.083 0.867 0.000 0.055 0.073 0.933

500 -0.001 0.046 0.073 0.860 0.000 0.042 0.057 0.917

300 �̂
II

e 0.000 0.059 0.083 0.873 0.001 0.056 0.083 0.927

500 -0.001 0.047 0.077 0.850 0.000 0.042 0.067 0.913

300 b� -0.001 0.048 0.040 0.560 -0.001 0.048 0.040 0.557

500 0.003 0.039 0.057 0.733 0.003 0.039 0.063 0.737

�0= 0:3 �0= 0:3
300 �̂e -0.003 0.035 0.063 0.910 -0.004 0.032 0.060 0.950

500 0.005 0.026 0.063 0.970 0.002 0.024 0.063 0.990

300 �̂
II

e -0.001 0.034 0.063 0.923 -0.001 0.032 0.057 0.940

500 0.005 0.026 0.050 0.977 0.002 0.023 0.060 0.993

300 �̂e -0.001 0.061 0.063 0.843 0.000 0.059 0.060 0.997

500 -0.001 0.048 0.050 0.823 0.000 0.044 0.053 0.997

300 �̂
II

e -0.001 0.059 0.057 0.860 0.001 0.055 0.057 0.920

500 -0.001 0.046 0.053 0.867 0.000 0.041 0.050 0.940

300 b� -0.001 0.040 0.057 0.707 -0.001 0.040 0.057 0.700

500 0.002 0.032 0.053 0.890 0.002 0.032 0.053 0.883

�0= 0:7 �0= 0:7
300 �̂e -0.008 0.051 0.240 0.850 -0.011 0.049 0.230 0.893

500 0.002 0.035 0.167 0.920 -0.001 0.035 0.170 0.950

300 �̂
II

e 0.000 0.033 0.060 0.913 -0.001 0.030 0.067 0.940

500 0.005 0.025 0.057 0.980 0.002 0.023 0.053 0.993

300 �̂e -0.001 0.087 0.117 0.837 -0.003 0.098 0.167 0.970

500 -0.002 0.064 0.077 0.840 -0.001 0.069 0.113 0.967

300 �̂
II

e -0.002 0.059 0.063 0.800 -0.001 0.055 0.063 0.847

500 0.000 0.044 0.050 0.873 0.001 0.040 0.053 0.980

300 b� -0.001 0.023 0.045 0.997 -0.001 0.023 0.049 0.997

500 0.001 0.018 0.053 1.000 0.001 0.018 0.057 1.000

We compute ̂e =
�
�̂e; �e

�′
using equation (3.2) in Arellano and Bover (1995),

and ̂IIe =
�
�̂
II

e ; �
II
e

�′
using equation (43), and (44





Figure 2: Quantile distribution of real house prices in US MSAs, in the years 2000 to 2005 (left)
and 2006 to 2011 (right)

Figure 3: Quantile distribution of non performing loans in US MSAs, in the years 2000 to 2005
(left) and 2006 to 2011 (right)
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Table 7: Determinants of non-performing loans in the period of the bubble bursting (2006 to 2011)

(I): GMM-DIF (II): GMM-LEV (III): GMM-SYS

CONVENTIONAL GMM

Par. S.E. Par. S.E. Par. S.E.

yi;t−1 0.225∗ 0.020 0.496∗ 0.028 0.369∗ 0.015

HP it -0.734∗ 0.240 -1.015∗ 0.176 -0.689∗ 0.138

GSEit 0.184 0.099 0.424 0.257 0.325 0.242

INCOMEit -0.707∗ 0.497 -1.075∗ 0.098 -1.379∗ 0.057

URATEit 0.957∗ 0.064 0.569∗ 0.092 1.051∗ 0.046

IRATEit 0.031∗ 0.011 -0.022 0.013 -0.049∗ 0.008

POP it 3.444∗ 0.936 0.121∗ 0.043 0.044 0.038

EQASSit -0.547∗ 0.081 -0.430∗ 0.126 -0.652∗ 0.068

HHI it -0.204∗ 0.058 -0.008 0.051 -0.183∗ 0.036

SPATIAL GMM

yi;t−1 0.240∗ 0.021 0.502∗ 0.029 0.391∗ 0.015

HP it -0.674∗ 0.278 -1.135∗ 0.216 -0.778∗ 0.159

GSEit 0.204∗ 0.082 0.348∗ 0.069 0.236∗ 0.046

INCOMEit -0.845∗ 0.514 -1.055∗ 0.101 -1.315∗ 0.059

URATEit 0.906∗ 0.090 0.548∗ 0.119 0.871∗ 0.070

IRATEit 0.047∗ 0.015 -0.014 0.030 -0.022 0.017

POP it 3.445∗ 0.977 0.158∗ 0.052 0.112∗ 0.043

EQASSit -0.514∗ 0.083 -0.419∗ 0.138 -0.653∗ 0.072

HHI it -0.246∗ 0.062 -0.026∗ 0.009 -0.189∗ 0.038

b� 0.574∗ 0.131 0.720∗ 0.078 0.702∗ 0.101

AR(1) -7.01 [0.00] -6.00 [0.00] -7.7 [0.00]

AR(2) 1.11 [0.30] 1.56 [0.56] 1.12 [0.26]

Hansen 230.54 [0.31] 130.16 [0.11] 335.94 [0.34]

Notes: (∗) denote 5 per cent signiÖcance level respectively.
Standard errors are reported in in round brackets, while p-value are shown
in square brackets
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