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1. Introduction  

The Federal Funds rate is the interest rate at which depository institutions in the US lend 

each other overnight (normally without a collateral) balances held at the Federal Reserve 

System (the Fed), which are known as Federal Funds. Such deposits are held in order to 

satisfy the reserve requirements of the Fed. The rate is negotiated between banks, and its 

weighted average across all transactions is known as the Federal Funds effective rate. It 

tends to be more volatile at the end of the reserve maintenance period, the so-called 

settlement Wednesday, when the requirements have to be met.
1
 The Federal Funds target 

rate is instead set by the Chairman of the Fed according to the directives of the Federal 

Open Market Committee (FOMC), which holds regular meetings (as well as additional 

ones when appropriate) to decide on this target. It is therefore a policy rate, used to 

influence the money supply, and to make the effective rate (which by contrast is 

determined by the interaction of demand and supply) follow it. Specifically, the Trading 

Desk of the Federal Reserve Bank of New York conducts open market operations on the 

basis of the agreed target. This is considered one of the most important indicators for 

financial markets, whose expectations can be inferred from the prices of option contracts 

on Federal Funds futures traded on the Chicago Board of Trade. 

Given the fact that the Fed implements monetary policy by setting a target for the 

effective Federal Funds rate which also affects other linked interest rates and the real 

economy through various transmission channels, it is not surprising that both the 

theoretical and the empirical literature on this topic are extensive. Theoretical contributions 

include a well-known paper by Bernanke and Blinder (1988), who propose a model of 

monetary policy transmission which they then test in a follow-up study (Bernanke and 

Blinder, 1992) showing that the Federal Funds rate is very useful to forecast real 

                                                 
1
 In empirical studies, therefore, the series is often adjusted to eliminate this effect (see, e.g., Sarno and 

Thornton (2003). 
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with permanent effects of shocks. This is a rather strong assumption that is not justified on 

theoretical grounds. The classic alternative is to assume that the Federal Funds 
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where yt is the observed time series; β is a (kx1) vector of unknown parameters, and zt is a 

(kx1) vector of deterministic terms, that might include, for example, an intercept (i.e. zt = 

1) or an intercept with a linear trend (zt = (1,t)
T
);  L is the lag operator (i.e., L

s
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(see, inter alia, Magnus et al., 1966, or Rainville, 1960, for further details). Gray et al. 

(1989, 1994) showed that this process is stationary if 5.02d  for 1cos rw  and if 

25.02d  for 1. If d2 = 1, the process is said to contain a unit root cycle (Ahtola and 

Tiao, 1987; Bierens, 2001); other applications using fractional values of d2 can be found in 

Gil-Alana (2001), Anh, Knopova and Leonenko (2004) and Soares and Souza (2006). 

 In the empirical analysis we use a very general testing procedure to test the model 

given by equations (1) and (2). It was initially developed by Robinson (1994) on the basis 

of the Lagrange Multiplier (LM) principle that uses the Whittle function in the frequency 

domain. It can be applied to test the null hypothesis: 
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in (1) and (2) where d10 and d20 can
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(weekly data). The case of AR(2) disturbances is interesting because it allows to capture 

the cyclical pattern of the series through a short-memory I(0) process for ut.
6
 

 Likelihood Ratio (LR) tests and other likelihood criteria (not reported) suggest that 

the model with AR(2) disturbances outperforms the others. These results, however, might 

be biased owing to the long memory in the cyclical structure of the series having been 

overlooked. Thus, we next consider a model such as (1) and (2) with zt (1,t)
T
, i.e., the null 

model now becomes 

,10 tt xty     (9) 
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again with I(0) (potentially ARMA) ut. The results, for the case of an intercept, which is 

the most realistic one on the basis of the t-values (not reported), are displayed in Table 2. 

[Insert Table 2 about here] 

 The estimated values of r and thus j = T/r (the number of periods per cycle) for the 

four series is now close to 8 years. Specifically, j is found to be 8 in the case of the annual 

data; 97 (and thus 97/12 = 8.089 years) for the monthly data; and 7.57 years (212/28 and 

424/56) for bi-weekly and weekly data. This is consistent with the plots of the 

periodograms displayed in Figure 3. Focusing now on the fractional differencing 

parameters, it can be seen that d1 is close to (although below) 1 and d2 is slightly above 0 

for the four series. For d1 the unit root null is rejected in favour of mean reversion in the 

case of annual, bi-weekly and weekly data; however, for monthly data, even though d1 is 

still below 1, the unit root null cannot be rejected at conventional significance levels. As 

for the cyclical fractional differencing parameter, d2, is estimated to be 0.094 in the annual 

case and the I(0) null hypothesis cannot be rejected. In the remaining three cases, d2 is 

significantly above 0 (thus displaying long memory), ranging from 0.145 (weekly data) to 

                                                 
6
 The estimates of the AR(2) coefficients (not reported) were in all cases in the complex plane, which is 

consistent with the cyclical pattern observed in the data. 
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0.234 (monthly data). Very similar values for d1 and d2 are obtained in the case of 

autocorrelated disturbances; LR and no-autocorrelation tests strongly support the white 

noise specification for ut for each of the four series.
7
 

 Finally, we investigate which of the two specifications (the I(d) one with AR(2) 

disturbances or the one with the two fractional differencing structures) has a better in-

sample performance, and also better forecasting properties. For the first of these two 

purposes we employ several goodness-of-fit measures based on the likelihood function. 

For the forecasting experiment, we use instead various statistics including the modified 

Diebold and Mariano (1995) (M-DM) statistic. Remember that the two models considered 

are: 
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and therefore they differ in the way the cyclical component is modelled, model (M1) and 

(M2) adopting respectively an AR(2) process and a Gegenbauer (fractional) specification 

for the d1-differenced (
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precisely that for the annual series. Other likelihood criteria (AIC and SIC) lead essentially 

to the same conclusions.
8
 

 Next we focus on the forecasting performance of the two models. For this purpose 

we calculate one- to twenty-step ahead forecasts over 20 periods for each of the four series 

at different data frequencies. The forecasts were constructed according to a recursive 

procedure conditionally upon information available up to the forecast date which changes 

recursively.  

We computed the Root Mean Squared Errors (RMSE) and the Mean Absolute 

Deviation (MAD) for the two specifications of each series. The results (not reported here 

for reasons of space, but available from the authors upon request) indicate that the 

fractional structure outperforms the AR(2) model in practically all cases.  

However, the above two criteria and other methods such as the Mean Absolute 

Prediction Error (MAPE), Mean Squared Error (MSE), etc., are purely descriptive 

devices.
9
 Several statistical tests for comparing different forecasting models are now 

available. One of them, widely employed in the time series literature, is the asymptotic test 

for a zero expected loss differential due to Diebold and Mariano (1995).
10

 Harvey, 

Leybourne and Newbold (1997) note that the Diebold-Mariano test statistic could be 

seriously over-sized as the prediction horizon increases, and therefore provide a modified 

Diebold-Mariano test statistic given by: 

,
n

n/)1h(hh21n
DMDMM  

                                                 
8
 Note, however, that these criteria might not necessarily be the best criteria in applications involving 
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where DM is the original Diebold-Mariano statistic, h is the prediction horizon and n is the 

time span for the predictions. Harvey et al. (1997) and Clark and McCracken (2001) show 

that this modified test statistic performs better than the DM test statistic, and also that the 

power of the test is improved when p-values are computed with a Student t-distribution. 

We further evaluate the relative forecast performance of the different models by 

making pairwise comparisons based on the M-DM test statistic. We consider 5, 10, 15, 20 

and 25-period ahead forecasts. The results are displayed in Table 3. 

[Insert Table 3 about here] 

 They show that for the 5-step and 10-step ahead predictions it cannot be inferred 

that one model is statistically superior to the other. By contrast, over longer horizons there 

are several cases where the fractional model (M2) outperforms (M1). However, these 

forecasting methods may have very low power under some circumstances, especially in the 

case of non-linear models (see, e.g., Costantini and Künst, 2011). Thus, these results 

should be taken with caution. 

 

4. Conclusions 

This paper uses long-range dependence techniques to analyse two important features of the 

US Federal Funds effective rate, namely its persistence and cyclical behaviour. In 

particular, it examines annual, monthly, bi-weekly and weekly data, from 1954 until 2010. 
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second model considered uses a Gegenbauer-type of process for the cyclical component, 

and therefore has two fractional differencing parameters, one corresponding to the long-run 

or zero frequency (d1), and the other to the cyclical structure (d2). When using this 

specification the results indicate that the order of integration at the zero frequency ranges 

between 0.802 (bi-weekly frequency) and 0.966 (monthly), whilst that of the cyclical 

component ranges between 0.094 (annual) and 0.234 (bi-weekly). Both the in-sample and 

out-of-sample evidence suggest that the long memory model with two fractional structures 

(one at zero and the other at the cyclical frequency) outperforms the other models. 

 Our results are not directly comparable to those of Sarno et al. (2005), who model 

the difference between the effective and the target rate, whilst we focus only on the former. 

Nevertheless, our analysis, based on letting the data speak by themselves to find the most 

suitable specification, produces valuable evidence for interest rate modelling, since it 

shows that an I(d) specification including a cyclical component outperforms both classical 

I(0) and simple I(d) models. This confirms the importance of adopting an econometric 

framework such as the one chosen here, which explicitly takes into account both 

persistence and cyclical patterns, to model the behaviour of the US Federal Funds effective 

rate and interest rates in general. 
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Appendix 

The test statistic proposed by Robinson (1994) for testing Ho (5) in the model given by  

equations (1) and (2) is given by: 
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function gu above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric and, therefore, they require specific modelling 

assumptions about the short-memory specification of ut. Thus, if ut is white noise, gu  1, 
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and if ut is an AR process of the form (L)ut = t, gu = (e
i

)
-2

, with 
2
 = V( t), so that the 

AR coefficients are a function of . 

 

 

 

 

 





18 

 

Clarida, R.H., Gali, J. and M. Gertler (2000), “Monetary policy rules and macroeconomic 

stability: evidence and some theory”, Quarterly Journal of Economics, 115, 147-180. 

Clarida, R.H., Sarno, L., Taylor, M. and L. Valente (2006), “The role of asymmetries and 

regime shifts in the term structure of interest rates”, Journal of Business, 79, 3, 1193-1224. 

Clark, T.E. and M.W. McCracken, 2001, Tests of forecast accuracy and encompassing for 

nested models, Journal of Econometrics 105, 85-110. 

Costantini, M. and R.M. Künst, 2011, On the usefulness of the Diebold and Mariano test in 

the selection of prediction models, Econometric Series 276, Institute for Advanced Studies. 

Couchman, J., R. Gounder and J.J. Su, 2006, Long memory properties of real interest rates 

for 16 countries, Applied Financial Economics Letters 2, 25-30. 

Dahlhaus, R. (1989), “Efficient Parameter Estimation for Self-similar Process”, Annals of 

Statistics, 17, 1749-1766. 

Diebold, F.X. and R.S. Mariano, 1995, Comparing predictive accuracy, Journal of 

Business, Economics and Statistics 13, 253-263. 

Diebold, F.X. and G.D. Rudebusch, 1989, Long memory and persistence in the aggregate 

output. Journal of Monetary Economics 24, 189-209. 

Gil-Alana, L.A., 2001, Testing stochastic cycles in macroeconomic time series. Journal of 

Time Series Analysis 22, 411-430. 

Gil-Alana, L.A. and P.M. Robinson, 1997, Testing of unit roots and other nonstationary 

hypotheses in macroeconomic time series. Journal of Econometrics 80, 241-268. 

Gray, H.L., Yhang, N. and Woodward, W.A., 1989, On generalized fractional processes, 

Journal of Time Series Analysis 10, 233-257. 

Gray, H.L., Yhang, N. and Woodward, W.A., 1994, On generalized fractional processes. A 

correction, Journal of Time Series Analysis 15, 561-562. 





20 

 

Sarno, L. and D.L. Thornton (2003), “The dynamic relationship between the Federal Funds 

rate and the Treasury bill rate: an empirical investigation”, Journal of Banking and 

Finance, 27, 1079-1110. 



21 

 

 

Figure 1: Original time series data 
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Figure 2: Correlogram of the time series 
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Note:  The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 
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Figure 3: Periodogram of the time series 
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Note:  The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 

 

 

 

 



24 

 

Table 1: Estimates of d and 95% confidence interval in an I(d) model with an intercept 

 

 

White noise AR(1) disturbances AR(2) disturbances 

Annual 0.937 

(0.704,  1.450) 

0.544 

(0.429,  0.700) 

0.722 

(0.334,  1.495) 

Monthly 1.277 

(1.189,  1.383) 

0.821 

(0.742,  0.913) 

0.852 

(0.679,  1.016) 

Bi-Weekly 1.168 

(1.122,  1.213) 

1.025 

(0.891,  1.146) 

0.824 

(0.633,  1.008) 

Weekly 0.973 

(0.954,  0.994) 

1.086 

(1.044,  1.127) 

1.045 

(0.984,  1.101) 
The values are Whittle estimates of d in the frequency domain (Dahlhaus, 1989). Those in parentheses are 

the 95% confidence interval of the non-rejection values of d using Robinson (1994). 

 

 

 

 

 

Table 2: Estimates of d1 and d2 in the model with two fractional structures 

Frequency r  ( j ) d1 d2 

Annual j = 7   (r = 8) 0.932  (0.561,  0.983)  0.094  (-0.008,  0.233) 

Monthly j = 683  (r = 97) 0.966  (0.895,  1.128) 0.145  (0.109,  0.217) 

Bi-Weekly j = 1486  (r = 212)
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